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Purpose: Automated segmentation of lung tumors attached to anatomic structures such as the chest
wall or mediastinum remains a technical challenge because of the similar Hounsfield units of these
structures. To address this challenge, we propose herein a spline curve deformation model that com-
bines prior shapes to correct large spatially contiguous errors (LSCEs) in input shapes derived from
image-appearance cues.The model is then used to identify the adhesion boundaries between large
lung tumors and tissue around the lungs.
Methods: The deformation of the whole curve is driven by the transformation of the control points
(CPs) of the spline curve, which are influenced by external and internal forces. The external force
drives the model to fit the positions of the non-LSCEs of the input shapes while the internal force
ensures the local similarity of the displacements of the neighboring CPs. The proposed model cor-
rects the gross errors in the lung input shape caused by large lung tumors, where the initial lung shape
for the model is inferred from the training shapes by shape group-based sparse prior information and
the input lung shape is inferred by adaptive-thresholding-based segmentation followed by morpho-
logical refinement.
Results: The accuracy of the proposed model is verified by applying it to images of lungs with either
moderate large-sized (ML) tumors or giant large-sized (GL) tumors. The quantitative results in terms
of the averages of the dice similarity coefficient (DSC) and the Jaccard similarity index (SI) are
0.982 � 0.006 and 0.965 � 0.012 for segmentation of lungs adhered by ML tumors, and
0.952 � 0.048 and 0.926 � 0.059 for segmentation of lungs adhered by GL tumors, which give
0.943 � 0.021 and 0.897 � 0.041 for segmentation of the ML tumors, and 0.907 � 0.057 and
0.888 � 0.091 for segmentation of the GL tumors, respectively. In addition, the bidirectional Haus-
dorff distances are 5.7 � 1.4 and 11.3 � 2.5 mm for segmentation of lungs with ML and GL
tumors, respectively.
Conclusions: When combined with prior shapes, the proposed spline curve deformation can deal
with large spatially consecutive errors in object shapes obtained from image-appearance information.
We verified this method by applying it to the segmentation of lungs with large tumors adhered to the
tissue around the lungs and the large tumors. Both the qualitative and quantitative results are more
accurate and repeatable than results obtained with current state-of-the-art techniques. © 2019 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13998]

Key words: lung tumor segmentation, shape group-based sparse prior models, spline curve
deformation model, tumors attached to normal structures

1. INTRODUCTION

Accurate delineation of the lesions in computed tomography
(CT) images is a fundamental and challenging problem in
computer-assisted diagnosis systems. Highly accurate, robust,
and automated techniques are available to segment tumors
that appear as homogenous, high-intensity solid lesions with

clear boundaries against a background of low-intensity lung
parenchyma.1–4 However, when tumors (especially large
tumors) are adhered to the anatomical structure around the
lung, such as the chest wall or mediastinum, tumor segmenta-
tion remains a technical challenge because of the similar
intensity of the tumor and the normal attached organs and the
irregular shape of large tumors. Figure 1 shows typical
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examples of lung-boundary adhesion large tumors, where a
large tumor remains confined to the damaged lung or if the
ratio of the tumor area to the damaged lung area is much less
than unity, it is categorized as a moderate large-sized (ML)
tumor; otherwise, it is categorized as a giant large-sized (GL)
tumor. In the past, numerous methods have been proposed to
mainly segment on small lung masses attached to lung
boundaries (e.g., juxta-pleural nodules) including region-
growing or watershed followed by morphological processing,
supervised segmentation models based on feature extraction
and support vector machines or neural networks, and energy
minimization models with prior knowledge.5–25 With the
intensive investigation of sparse representation, the sparse
constraints have been used to model shape priors, which
explicitly model spatially contiguous gross errors (non-Gaus-
sian errors) in input shapes with sparse vectors and assume
that these gross errors are sparse with respect to the given
shape information.26–30 However, this assumption does not
hold when very large tumors are attached to lung boundaries
because the non-Gaussian errors caused by these tumors are
no longer sparse relative to the input lung shapes.

In this paper, we first propose a spline curve deformation
model that combines prior shapes to correct large spatially
contiguous errors (LSCEs) in input shapes derived from
image-appearance cues. The external and internal forces drive
the control points (CPs) of the model to fit the targets. The
model is then used to identify the adhesion boundaries
between large lung tumors and tissue around the lungs as
shown in Fig. 1. Depending on tumor size, the initial shapes
(prior shapes) of the deformation are automatically inferred
by the sparse-shape group composition (SGC) model or by
the sparse similar-shape linear combination (SLC) model.

2. MATERIALS AND METHODS

2.A. Spline curve deformation model

B-spline algorithms have become the standard for compu-
tational geometric representation because they offer the

advantages of local modification, continuity, and strong con-
vex hull to give finer shape control.31,32 In our method, the
B-spline algorithm is used to fit the transformed CPs on
deformation model to a curve, which not only drives the
whole curve to deform but also is able to ensure the smooth-
ness of the whole shape, where the deformation model is to
drive the CPs to match observations (e.g., the boundary
points of an object) starting from a prior shape. Suppose that
the input shapes containing the LSCEs (i.e., the contours of
the objects derived from image data) are the simple shapes
that do not intersect themselves and the possible errors on the
parts of the non-LSCEs only follow the Gaussian distribution
with small variances. The goal of the proposed model is to
correct the LSCEs on the input shapes by deforming simple
curves to fit the specified positions on the parts of the non-
LSCEs of the input shapes (called target control points,
TCPs), where the initial shapes of the curves are obtained
from the prior shapes of the object. That is, the TCPs serve as
the external force to drive the corresponding CPs on the
model to match with them. We name the CPs that are
expected to match the TCPs as critical control points (CCPs)
and the curve segments that contain the CCPs as handles.

The energy function of the external force is denoted as:

Eext ¼ TVc � V
0
c

�� ��2
2
; (1)

where �k k2 is the L2 norm, sparse matrix T represents a
transformation of all the points of the model, Vc and V

0
c are

the column vectors of the CCPs and corresponding TCPs
respectively, which are equal in length to T by adding 0
values at non-CCP and TCP points. To obtain the natural
and reasonable shapes in the process of the model deforma-
tion, we limit transformation to translations, rotations and
isotropic scales. Instead of measuring the T’s distances
directly, we optimize the T for all the CPs. In order to
design a convex optimization of the energy function, we
reformulate the T to transformation vector t. Thus, the CP
k’s transformation Tkvk is substituted with Aktk, where Ak

contains the coordinates of the CP k. We concatenate the

FIG. 1. Typical instances of moderate large-sized (ML) and giant large-sized (GL) lung-boundary adhesion tumors. The tumors are encircled in red: (a) ML
tumor; (b) is GL tumor. [Color figure can be viewed at wileyonlinelibrary.com]
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coordinates Ak into a sparse matrix. The matrix of the CCPs
is Dc ¼ diagðA1;A2; � � � ;Am; 0; � � � ; 0Þ. Then, Eq. (1) is for-
mulated as:

Eext ¼ Dct� V
0
c

�� ��2
2: (2)

Our internal force maintains the local similarity of the
model by regularizing the differences of the transformation
matrices between neighboring CPs. So the energy function of
the internal force is:

Eint ¼
X
k2V

X
s2NðkÞ

wks Aktk � Aktsk k22; (3)

where weight wks is the strength of connection between the
CPs k and s, NðkÞ � N is the neighborhood structure of the
CP k. In order to express the energy function of the internal
force as a quadratic form of all the transformation vectors t
like Eq. (2), we encode the matrix Ak into its Kronecker pro-
duct with matrix Sk as Kk ¼ Sk � Ak , where Sk is a d� n
matrix of the CP k. For each neighbor CP s, there is one row
in Sk , where the kth item is wks and the sth item is �wks,
while the other items are all zeros. The energy function of the
internal is formulated as:

Eint ¼ Ktk k22: (4)

Thus, the deformation model is defined as:

argmin
t

Ktk k22þx Dct� V
0
c

�� ��2
2

n o
; (5)

where is a weight that controls to what extent the model
curves can deform to match the TCPs. Larger leads to a better
matching, but the deformed shape may not be smooth. This
equation can be solved by least square minimization.

2.B. Separation of large tumors from attached
organs

In this section, we present a robust separation method of
large lung tumors from the attached lung-boundary organs in
CT images. The proposed spline curve deformation model is
employed to correct LSCEs on the input shapes of the lungs
caused by the tumors, so as to pinpoint the adhesion bound-
aries between the tumors and normal tissues. The proposed
method involves five major procedures: (a) lung contour
extraction, (b) deformation model initialization, (c) handle
positioning, (d) spline curve deformation, and (e) tumor seg-
mentation. Figure 2 shows a flowchart of the proposed
method. The lung contour is extracted based on image-ap-
pearance cues, like adaptive-thresholding-based segmentation
followed by morphological refinement. Here even-distributed
sparse points on the lung boundary are selected to represent
the lung contour. Thus corner points and high curvature
points were extracted as the sparse points by corresponding
selectors firstly and the rest is obtained using a nearest-neigh-
bor interpolation algorithm.33 The initial contour of deforma-
tion model for a specific slice comes from the lung’s shape
prior in that slice which is generated by shape group-based

sparse prior models (SGC or SLC). The whole tumors are
segmented using the random walk method,34 where target
and background seeds are extracted uniformly with the help
of a computer-aided system.

2.B.1. Sparse-shape group composition model

Inspired by the sparse-shape-composition (SSC) model to
model shape priors,26 we introduced the spatial relationship
of multiple objects into the shape composition model to pro-
pose the SGC model.30 In this work, the SGC model is used
to obtain the prior shape of a lung with an ML adhesion
tumor. We assume that at least one of the lungs is intact.
Thus, the shape groups made with the left and right lungs of
the same slice are applied to the model to make the LSCEs
sparse with respect to the given shape groups. Thus the train-
ing repository for the group of shapes can be represented as a
matrix G ¼ g1; g2; . . .; gv½ �, where v is the number of training

samples, gi ¼ sLi
� �T

sRi
� �Th iT

is ith shape group in the train-

ing samples, which is constructed by left lung contour sLi and
right lung contour sRi in serial mode. Accordingly, the input

shape group is expressed as yg ¼ yTL y
T
R

� �T
in serial mode.

The advantage of the serial mode is that it can directly reserve
the patient information in the model and compute the optimal
parameters of the model by iteratively applying the expecta-
tion step and the maximization step of the expectation-maxi-
mization algorithms proposed in Ref. [30].

2.B.2. Model based on linear combination of sparse
similar-shape groups

For the contours derived from lungs with GL tumors
attached, their prior shapes fail to be inferred based on the
SGC model as the LSCEs corresponding to input shape
groups are not sparse. Here the SLC model is proposed to
overcome this problem, which uses the lung contour without
boundary defect to infer the lung contour with boundary
defect in the same slice.We represent the lung contour with-
out boundary defect in a given shape group as a reference
shape. First, the prior shape of the reference shape is gained
by the SSC model, where the shapes that constitute a linear
combination of the reference shape are called its linear com-
bination shapes. Meanwhile, the shape groups in test data-
base that contain the linear combination shapes are named as
the sparse similar-shape groups of the reference shape. Then,
the prior shape of the damaged lung in the same slice as the
reference shape is gained by the linear combination of sparse
similar-shape groups.

2.B.3. Automatic positioning of handles

The purpose of locating the handles on the initial contour
is to generate the TCPs on the input shapes. Because the
TCPs are the target points of the CCPs’ displacements, we
specify them as the intersections between the normal lines
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passing the CCPs on the handles and the input curves. Thus,
one end of a handle is fixed to the CPs on the non-LSCE seg-
ments, and the other end of the handle is positioned at the
intersection between the initial contour and the line that tan-
gents to the input curve through the center point of the large
error position. Figure 3 illustrates the handle-position
approach. The center point p0 is in the largest of the regions
determined by set C = A � (A ∩ B), where sets A and B
denote the regions surrounded by the initial shape and input
shape, respectively. The tangent lines p0p1 and p0p2 intersect
the initial shape at points p3 and p4, respectively. The CPs p3’
and p4’ on the non-LSCE segments are selected as the end
points of the handles. Thus, the segments p3p3’ and p4p4’ on
the initial shape are the specified handles, respectively.

3. EXPERIMENTS AND RESULTS

3.A. Experiment data and environment

To verify the proper functioning of the proposed method,
we applied it to three databases. We used the LIDC and the

RIDER databases from http://cancerimagingarchive.net,
which are the most extensive publicly available collection of
annotated CT images. We also collected lung tumor images
from the local medical center database with in-plane resolu-
tion from 0.5 to 0.95 mm, slice intervals of 5.00 mm, tube
voltages of 120 and 140 kVp, and currents from 40 to
340 mA. The LIDC database is used to build shape reposito-
ries with slice intervals of 1.00-5.00 mm.

In the image database, slice locations are numbered in
ascending order from the top of the lung to the bottom of the
lung and each of them contains at least 280 images from dif-
ferent cases.The slices of each test case are also sorted in the
same order as the image database, which effectively reduces
the search scope of the test slices in the shape repository
because only images whose relative positions in the image
database are similar to the relative position of the test slice in
the designate case are searched to construct the sparse combi-
nation representation of the test slices. The interval between
the CPs of the model is 5.5–6.0 mm, and each handle has
four CCPs.We focused primarily on tumors 40–110 mm in
diameter. A total of 185 tumor images were selected, 120 ML
tumors and 65 GL tumors, to verify the segmentation of large
tumors adhered to lung boundaries. For the ground truth, the
boundaries of lungs and tumors in each CT image were
marked by three radiologists from different institutions and
were cross-checked to guarantee accuracy. The proposed
models were implemented on a desktop PC with a Pentium
Dual-Core CPU E5800@ 3.20 GHz, 4 GB RAM, a NVIDIA
GeForce GT 430 GPU, with MATLAB 2009 on Windows 7.

3.B. Comparison of methods and evaluation
metrics

We compared the proposed spline curve deformation
model with the deformation models based on the image gra-
dient information. In addition, we compared the proposed
SGC and SLC with the SSC to verify the role of the shape
group in modeling prior shapes of lungs containing large

FIG. 2. Flowchart for separating large tumors from attached organs surrounding the lungs. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3. Schematic illustration showing the method used to locate handles of
the model. The segments p3p3’ and p4p4’ on the initial shape are the specified
handles, respectively: (a) Case of initial shape outside input curve; (b) Case
of initial shape inside input curve. [Color figure can be viewed at wileyonline
library.com]
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tumors. To summarize, the following methods were com-
pared:

SGC-I: represents deformation model based on gradient
information, where initial shape of the model is generated by
SGC model.

SLC-I: represents deformation model based on gradient
information, where initial shape of the model is generated by
SLC model.

SGC-R: represents deformation model based on gradient
information, where SGC model is used as a regularization
step in the model.

SLC-SGC-R: represents deformation model based on gra-
dient information, where initial shape is generated by SLC
model and SGC model is used as a regularization step in the
deformation model.

SGC-SCD: is the proposed spline curve deformation
model, where initial shape of the model is generated by SGC
model. It is used to correct lung boundaries containing ML
tumors.

SLC-SCD: is the proposed spline curve deformation
model, where initial shape of the model is generated by SLC
model. It is used to correct lung boundaries containing GL
tumors.

We use as evaluation metrics the dice similarity coefficient
(DSC) and the Jaccard similarity index (SI) between binary
masks to quantitatively compare different methods. We also
use as metric the bidirectional Hausdorff distance (BHD) to
quantify the dissimilarity between the sets of points on the

contour for the reference gold standard and the sets of points
on the contour of the object being tested.

3.C. Recognition of adhesion boundaries of large
tumors and segmentation of lungs and tumors

We first verify the SGC model by using it to model the
shape of a lung with an ML adhesion tumor. Figure 4 (in the
third row) offers qualitative results of some inferred lung con-
tour cases. It shows that the damaged lungs are well-recon-
structed through SGC model. Figure 5 shows the results of
the segmentation by four different methods of two representa-
tive examples of lungs with ML adhesion tumors. Although
SGC generates better initial constraint shapes, SGC-I does
not segment accurately in the presence of large weak-appear-
ance cues. The segmentation by SGC-R is better than that by
SGC-I. However, the air pipe near the lung is incorrectly
included in the lung contour (see red circle). The proposed
SGC-SCD model gives correct segmentation results.

Next, we test the validity of the SLC model by using it to
determine the shape of a lung with a GL adhesion tumor. Fig-
ure 6 shows that SGC cannot also capture such gross errors
in e, whereas SLC can approximately recover these missing
lung shapes. Figure 7 shows the segmentation results of dif-
ferent methods applied to two representative examples. SGC-
I and SGC-R poorly segment these severely damaged lungs.
Although SLC provides approximate initialization results,
limited improvements are achieved by using the segmentation

FIG. 4. Comparisons of contour inferences produced by sparse-shape group composition (SGC) and sparse-shape-composition (SSC) for lungs with moderate
large-sized adhesion tumors. The first row shows the lungs segmented by using image-appearance information (blue curves). A single gross error appears in each
example (red circles).The second row shows the inferred shapes (green curves) of lungs containing large tumors based on SSC. The third row shows the inferred
shape of the lung (red curves) based on SGC. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 5. Comparison of lungs with moderate large-sized adhesion tumors and segmented by using three different methods: (a) sparse-shape group composition
(SGC)-I; (b) SGC-R; (c) Proposed method (SGC-SCD); (d) Ground truth. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 6. Comparison of contour inference obtained by applying sparse-shape group composition (SGC) and sparse similar-shape linear combination (SLC) to
lungs with GL adhesion tumors. The first row shows lungs segmented by using image-appearance information (blue curves). A single gross error appears in each
example (see ellipses).The second row shows the inferred lung shapes obtained by using SGC (green curves) and SLC (red curves). [Color figure can be viewed
at wileyonlinelibrary.com]

FIG. 7. Comparison of lungs with GL adhesion tumors segmented by different methods: (a) sparse-shape group composition (SGC)-I; (b) SGC-R; (c) Sparse
similar-shape linear combination (SLC)-I; (d) SLC-SGC-R; (e) SLC-SCD; (f) Ground truth. [Color figure can be viewed at wileyonlinelibrary.com]
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methods based on SLC-I and SLC-SGC-R. The lung shapes
provided by the proposed method are more accurate.

Figure 8 summarizes the segmentation results of the left
or right lung containing ML or GL adhesion tumors in terms
of different methods. The mean values and standard devia-
tions of DSC, SI, and BHD of SGC-SCD method for lungs
containing ML tumors are 0.982 � 0.006, 0.965 � 0.012,
5.7 � 1.4 mm, respectively. The mean values and standard
deviations of DSC, SI, and BHD of SLC-SCD method
for lungs containing GL tumors are 0.952 � 0.048,
0.926 � 0.059, 11.3 � 2.5 mm, respectively. Although the
rest of the SGC-based methods (SGC, SGC-I, SGC-R, and
SGC-SCD) for lungs containing ML tumors and SLC-based
methods (SLC, SLC-I, SLC-R, and SLC-SCD) for lungs con-
taining GL tumors also have higher segmentation scores in
any evaluation metric than SSC method, the standard devia-
tions of these method are much larger than our proposed
methods.

We also compared the proposed method with other meth-
ods from the literature. Table I compares the DSC results for
lungs with ML or GL tumors obtained by using the methods
from Refs. 1,5,12. The results show that the proposed method
ranks first out of all the methods tested.

Finally, in Fig. 9, we present typical segmentation results for
different types of large tumors adhered to normal tissue around
the lungs. The top row to the bottom row show the results for a
right mediastinal adhesion tumor, left mediastinal adhesion
tumor, right lung pleural adhesion tumor, heterogeneous right
lung pleural adhesion tumor, left lung pleural adhesion tumor,
right lung GL adhesion tumor, and left lung GL adhesion
tumor, respectively. Table II presents the quantitative evalua-
tions based on DSC and SI of the segmentation results for
lungs, lung segments attached by tumors, and the different
types of tumors are shown in Fig. 9. The results of the proposed
approach for segmentation of lungs and for tumors adhered to
normal tissue around lungs are encouraging.

4. DISCUSSION

We have shown that the proposed method can achieve
accurate segmentation on ML and GL tumors. Its most dis-
tinctive features include (a) the adoption of spline curve
deformation model to correct large spatially contiguous errors
in lung shapes for separating large tumors from the adhesion
lung boundaries and (b) the inference of severely damaged
lung shapes that takes advantage of sparse-shape group mod-
els. Besides, the input shapes of the deformation model can
be derived from image-appearance cues and the target control
points driving the model to the adhesion boundaries between
objects can also be obtained conveniently, so the whole seg-
mentation model has high accuracy and low complexity com-
pared with the traditional gradient-based deformation model.

Figure 4 shows some representative and challenging cases.
The results indicate that the SGC method captures more of

FIG. 8. Mean values and standard deviations of dice similarity coefficient (DSC), similarity index (SI), and bidirectional Hausdorff distance (BHD) from left or
right lungs with moderate large-sized (ML) or gaint large-sized (GL) adhesion tumors. The abscissa corresponds to the different segmentation methods. For the
lungs with ML tumors (top row), the methods ordered from left to right on the abscissa are sparse-shape-composition (SSC), sparse-shape group composition
(SGC), SGC-I, SGC-R, and SGC-SCD. For the lungs with GL tumors (bottom row), the order from left to right on the abscissa is SSC, SGC, SLC, SGC-I,
SGC-R, SLC-I, SLC-SGC-R, and SLC-SCD: (a) DSC of lung with ML tumors; (b) SI of lung with ML tumors; (c) BHD of lung with ML tumors; (d) DSC of
lung with GL tumors; (e) SI of lung with GL tumors; (f) BHD of lung with GL tumors.

TABLE I. Comparison of mean dice similarity coefficient (DSC) for
segmentation of lungs.

Methods This work Ref. [9] Ref. [14] Ref. [15]

DSC 0.972 0.968 0.964 0.766
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FIG. 9. Typical segmentation results for different types of large tumors adhered to normal tissue around lungs. The first column shows the ground truth
for lungs (drawn by curves), the second column shows the segmentation results for damaged lungs, the third column shows the ground truth for tumors,
the fourth column shows the segmentation results for tumors, and the fifth column shows the three-dimensional delineations. The top row to the bottom
row correspond to a right mediastinal adhesion tumor, a left mediastinal adhesion tumor, a right lung pleural adhesion tumor, a heterogeneous right lung
pleural adhesion tumor, a left lung pleural adhesion tumor, a right lung large adhesion tumor, and a left lung large adhesion tumor, respectively. [Color
figure can be viewed at wileyonlinelibrary.com]
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the large concave errors of the boundaries in the sparse vector
e and generates more reasonable shapes than does the SSC
model. We attribute this result to the sparsity of the large
errors relative to the whole shape group. In conventional SSC
models,20,26–29 gross errors are assumed to be sparse with
respect to a single given shape. It is in lack of the ability of
capturing LSCEs in input shapes.

However, for lungs with GL tumors attached, compared
with SSC and SGC models, only SLC model can effectively
reconstruct the missing part of the damaged lungs as shown
in Fig. 6. This is because such a tumor encroaches on most of
the lung and typically is not even surrounded by the lung it
occupies, the segmentation method based on image-appear-
ance information fails to find the missing part of the original
lung, which provides incorrect shape cues for single shape
composition models. In SLC model, the prior shape of a
complete lung is a linear combination of relevant shapes
obtained by SSC algorithm, while the prior shape of the
incomplete lung in the same slice is a linear combination of
other shapes that belong to the same shape group as these rel-
evant shapes. Thus, the model omits the assumption of the
sparsity of gross errors.

Note that DSC and SI always provide good results for all
methods for lungs with ML adhesion tumors. This result is
attributed to the fact that the adhesion part is relatively small
compared with the whole lung. The three methods based on
SGC, that is, SGC, SGC-I and SGC-R, perform better than
the SCC in term of BHD because the spatial structure of two
lungs is modeled. However, for lungs with GL adhesion
tumors, the methods based on SGC produce poor results
because they fail to capture the errors in the sparse vector e.
The three methods based on SLC (SLC-I, SLC-SGC-R, and
SLC-SCD) produce better results for these specific lungs. In
terms of the three metrics, the proposed segmentation meth-
ods produce the best results. The main reason leading to these
results can be explained as follows. First, the TCPs in input
shapes rather than gradient information of images serve as
external forces to drive deformation models to object bound-
aries. In the traditional energy minimization models based on
gradient information,20–25 it is usually required that the
boundaries of the objects to be segmented be clear and their

intensities vary suddenly in order to be captured by the
model. However, the boundaries of lungs attached to large
tumors are blurred, which leads to boundary leakage of seg-
mentation results. In the proposed models, the TCPs are
always automatically specified by the handles of the models
in advance. There are clear external forces to drive the models
to deform to the lung boundaries. The second reason is that
the sparse-shape group models more effectively reconstruct
the prior shapes of the severely damaged lungs than the con-
ventional SSC model, which greatly improves the accuracy of
the correction of large errors at the lung boundaries.

5. CONCLUSIONS

We propose a spline curve deformation to deal with large
spatially consecutive errors in object shapes obtained from
image-appearance information. The deformation of the whole
curve is driven by the transformation of the control points in
the model, which are influenced by external and internal
forces. The proposed model is used to identify large adhesion
interfaces between tumors and normal structures around
lungs in chest CT images by correcting the gross errors in the
lung input shapes caused by large lung tumors. The initial
shape for the model is inferred from the training shapes by
shape group-based sparse prior information and the input
shape is obtained by adaptive-thresholding-based segmenta-
tion followed by morphological refinement. The validity of
the proposed model is checked on three databases. In future
research, we will focus on two issues: how to improve the
extraction accuracy and efficiency of curve sections, espe-
cially for lungs with GL tumors, and how to extract more
information to enhance the fault tolerance of prior shapes.
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